Selective Mutation for Genetic Algorithms

نویسنده

  • Sung Hoon Jung
چکیده

In this paper, we propose a selective mutation method for improving the performances of genetic algorithms. In selective mutation, individuals are first ranked and then additionally mutated one bit in a part of their strings which is selected corresponding to their ranks. This selective mutation helps genetic algorithms to fast approach the global optimum and to quickly escape local optima. This results in increasing the performances of genetic algorithms. We measured the effects of selective mutation with four function optimization problems. It was found from extensive experiments that the selective mutation can significantly enhance the performances of genetic algorithms. Keywords—Genetic algorithm, selective mutation, function optimization

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهینه سازی قابهای فولادی با استفاده از الگوریتم وراثتی اصلاح شده هوشمند

One of the major purposes of optimization in civil engineering is to perform a suitable design for the structure. This goal has to fulfill technical criteria and contain the minimum economical costs. Building frames are of the most customary civil engineering structures. Therefore, optimization of these types of structures could be of a great concern from the economical viewpoints. One of the c...

متن کامل

FINDING HIGHLY PROBABLE DIFFERENTIAL CHARACTERISTICS OF SUBSTITUTION-PERMUTATION NETWORKS USING GENETIC ALGORITHMS

In this paper, we propose a genetic algorithm, called GenSPN, for finding highly probable differential characteristics of substitution permutation networks (SPNs). A special fitness function and a heuristic mutation operator have been used to improve the overall performance of the algorithm. We report our results of applying GenSPN for finding highly probable differential characteristics of Ser...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

Solving the Ride-Sharing Problem with Non-Homogeneous Vehicles by Using an Improved Genetic Algorithm with Innovative Mutation Operators and Local Search Methods

An increase in the number of vehicles in cities leads to several problems, including air pollution, noise pollution, and congestion. To overcome these problems, we need to use new urban management methods, such as using intelligent transportation systems like ride-sharing systems. The purpose of this study is to create and implement an improved genetic algorithms model for ride-sharing with non...

متن کامل

A Novel Experimental Analysis of the Minimum Cost Flow Problem

In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009